Tranalyzer2
tawk

Awk for Tranalyzer Flow Files

Tranalyzer Development Team

CONTENTS CONTENTS

Contents

1 tawk 1
1.1 Description o o e e e e e e e e e e e e e e e e e 1
1.2 Dependencies o v v i e e e e e e e e e e e e e 1
1.3 Installation e e e e e e e e 1
1.4 Usage o o e e 1
1.5 —sand -NOPLoOnS o o it e e e e 2
1.6 Related Utilities o o o e e 3
1.7 Functions o i e e e e 3
1.8 Examples e 9
1.9 2nfdump 10
110 2custom L o o e e e e e e e e 11
1.11 Writingatawk Function e 11
1.12 Using tawk Within Scripts o o e e e e e 12
1.13 Using tawk With Non-Tranalyzer Files 13
1.14 Awk Cheat Sheet e e 13
1.15 Awk Templates e 14
1.16 Examples o e e 17
LI7 FAQ . . o 18

b
Copyright © 2008-2024 by Tranalyzer Development Team

1 TAWK

1 tawk

1.1 Description

This document describes tawk and its functionalities. tawk works just like awk, but provides access to the columns via
their names. In addition, it provides access to helper functions, such as host () or port (). Custom functions can be
added in the folder named t2custom where they will be automatically loaded.

1.2 Dependencies

gawk version 4.1 is required.

Ubuntu: sudo apt-get install gawk

Arch: sudo pacman -S gawk

Gentoo: sudo emerge gawk
openSUSE: sudo zypper install gawk

Red Hat/Fedora': sudo dnf install gawk
macOS2: brew install gawk

1.3 Installation

The recommended way to install tawk is to install t2_aliases as documented in README . md:

* Append the following line to ~/.bashrc (make sure to replace $T2HOME with the actual path, e.g.,
SHOME/tranalyzer2-0.9.3):

if [-f "S$T2HOME/scripts/t2_aliases™]; then
ST2HOME/scripts/t2_aliases # Note the leading ~.'
fi

1.3.1 Man Pages

The man pages for tawk and t2nfdump can be installed by running: ./install.sh man. Once installed, they can be
consulted by running man tawk and man t2nfdump respectively.

1.4 Usage

¢ To list the column numbers and names: tawk -1 file_ flows.txt

¢ To list the column numbers and names as 3 columns: tawk —-1=3 file_flows.txt
¢ To list the available functions: tawk -g file_flows.txt

¢ To list the available functions as 3 columns: tawk -g=3 file_flows.txt

* To save the original filename and filter used: tawk -c ‘FILTER’ file_flows.txt > file.txt

1 the dnf command could not be found, try with yum instead
2Brew is a packet manager for macOS that can be found here: https://brew.sh

1
Copyright © 2008-2024 by Tranalyzer Development Team

https://brew.sh

1.5 -s and -N Options 1 TAWK

L]

To extract all ICMP flows and the header: tawk ‘hdr() || $14Proto == 1’ file_flows.txt > icmp.txt

To extract all ICMP flows without the header: tawk -H ‘icmp ()’ file_flows.txt > icmp.txt

To extract the flow with index 1234: tawk ‘SflowInd == 1234’ file flows.txt

To extract all DNS flows and the header: tawk ‘hdr() || strtonum($dnsStat)’ file_flows.txt

To consult the documentation for the function ‘func’: tawk -d func

To consult the documentation for the functions ‘min’ and ‘max’: tawk -d min,max

To consult the documentation for all the available functions: tawk -d all

L]

To consult the documentation for the variable ‘var’: tawk -V var

L]

To consult the documentation for the variable ‘var’ with value 0x8a: tawk -V var=0x8a

To decode all variables from tranalyzer?2 log file: tawk -L out_log.txt

To decode all variables from tranalyzer?2 log file (stdout): t2 -r file.pcap | tawk -L

To convert the output to JSON: tawk ‘json($flowStat "\t" tuple5())’ file_flows.txt

To convert the output to JSON: tawk ‘aggr (tuple2())’ file_flows.txt | tawk ‘json()’

To create a PCAP with all packets from flow 5: tawk -x flow5.pcap ‘$flowlInd == 5’ file_flows.txt

L]

To create a PCAP with packets 4-9: tawk -P -x pkts-4_to_9.pcap ‘packet ("4-9")’ file_packets.txt

L]

To see all ICMP packets in Wireshark: tawk -k ‘icmp()’ file_flows.txt

To see packet 4, 10 and 42 in Wireshark: tawk -P -k ‘packet ("4;10;42")’ file_packets.txt
For a complete list of options, use the -h option.

Note that an option not recognized by tawk is internally passed to awk/gawk. One of the most useful is the —v option
to set the value of a variable:

* Changing the output field separator:
tawk -v OFS=',’ ‘{ print $coll, S$col2 }’ file.txt

* Passing a variable to tawk:
tawk -v myvar=myvalue ‘{ print $coll, myvar }’ file.txt

For a complete list of options, run awk -h.

1.5 -s and -N Options

The -s option can be used to specify the starting character(s) of the row containing the column names (default: ‘%’). If
several rows start with the specified character(s), then the last one is used as column names. To change this behavior, the
line number can be specified as well with the help of the -N option. For example, if rows 1 to 5 start with ‘#’ and row 3
contains the column names, specify the separator as follows: tawk -s ‘#’ -N 3 If the row with column names does not
start with a special character, use -s ‘’.

2
Copyright © 2008-2024 by Tranalyzer Development Team

1 TAWK 1.6 Related Utilities

1.6 Related Utilities
1.6.1 awkf

Configure awk to use tabs, i.e., ‘\t’ as input and output separator (prevent issue with repetitive values), e.g.,
awkf ‘{ print $4 }’ file_flows.txt

1.6.2 Isx

Display columns with fixed width (default: 40), e.g., 1sx file_flows.txt or 1sx 45 file_flows.txt

1.6.3 sortu

Sort rows and count the number of times a given row appears, then sort by the most occurring rows. (Alias for sort
| unig -c | sort -rn). Useful, e.g., to analyze the most occurring user-agents: tawk ‘{ print S$httpUsrAg }’
FILE_flows.txt | sortu

sortup
Same as sortu, but display the relative percentage instead of the absolute count. e.g., to analyze the most occurring
user-agents: tawk ‘{ print S$httpUsrAg }’ FILE_flows.txt | sortup

1.6.4 tcol

Display columns with minimum width, e.g., tcol file_flows.txt.

1.7 Functions

Collection of functions for tawk:
» Parameters between brackets are optional,
 IPs can be given as string ("1.2.3.4"), hexadecimal (0xff£ff£fff) orint (4294967295),
» Network masks can be given as string ("255.255.255.0"), hexadecimal (0xf£££££00) or CIDR notation (24),
» Networks can be given as string, hexadecimal or int, e.g., "1.2.3.4/24" or "0x01020304/255.255.255.0",
« String functions can be made case insensitive by adding the suffix i, e.g., streq — streqi,
* Some examples are provided below,

* More details and examples can be found for every function by running tawk -d funcname.

Function Description

hdr () Use this function in your tests to keep the header (column names).
tuple2 () Return the 2 tuple (source IP and destination IP).

tuple3 () Return the 3 tuple (source IP, destination IP and port).

tupled () Return the 4 tuple (source IP and port, destination IP and port).

tupleb () Return the 5 tuple (source IP and port, destination IP and port, protocol).

3
Copyright © 2008-2024 by Tranalyzer Development Team

1.7 Functions

1

TAWK

Function

Description

tupleb ()

host ([ip|net])
shost ([ip|net])
dhost ([ip|net])
net ([iplnet])
snet ([iplnet])

dnet ([ip|net])

loopback (ip)

mcast (ip)
privip (ip)
port ([pl)
dport ([pl)
sport ([p])
ip()

ipvd ()
ipvé ()
proto ([p])

proto2str ([p])

icmp
igmp
tep
udp (
rsvp
gre (
esp (
ah ([
icmp

NTC —m —m —~ — /o~~~

Return the 6 tuple (source IP and port, dest. IP and port, proto, VLANID).

Return true if the source or destination IP is equal to ip or belongs to net.

If ip is omitted, return the source and destination IP.

Return true if the source IP is equal to ip or belongs to net.

If ip is omitted, return the source IP.

Return true if the destination IP is equal to ip or belongs to net.
If ip is omitted, return the destination IP.

Alias for host ([ip|net]).
Alias for shost ([ip|net]).
Alias for dhost ([ip|net]).

Return true if ip is a loopback address.
Return true if ip is a multicast address.
Return true if ip is a private IP.

Return true if the source or destination port appears in p
(comma or semicolon separated).

Ranges may also be specified using a dash, e.g., port ("1-3").
If p is omitted, return the source and destination port.

Return true if the destination port appears in p (comma or semicolon separated).

Ranges may also be specified using a dash, e.g., dport ("1-3").
If p is omitted, return the destination port.

Return true if the source port appears in p (comma or semicolon separated).

Ranges may also be specified using a dash, e.g., sport ("1-3").
If p is omitted, return the source port.

Return true if the flow contains IPv4 or IPv6 traffic.
Return true if the flow contains IPv4 traffic.
Return true if the flow contains IPv6 traffic.

Return true if the protocol number appears in p (comma or semicolon separated).

Ranges may also be specified using a dash, e.g., proto ("1-3").
If p is omitted, return the protocol number.

Return the string representation of the protocol number p.

If p is omitted, return the string representation of the protocol.
Return true if the protocol is equal to 1 (ICMP).

Return true if the protocol is equal to 2 (IGMP).

Return true if the protocol is equal to 6 (TCP).

Return true if the protocol is equal to 17 (UDP).

Return true if the protocol is equal to 46 (RSVP).

Return true if the protocol is equal to 47 (GRE).

Return true if the protocol is equal to 50 (ESP).

Return true if the protocol is equal to 51 (AH).

Return true if the protocol is equal to 58 (ICMPv6).

4

Copyright © 2008-2024 by Tranalyzer Development Team

TAWK

1.7 Functions

Function Description

sctp([pl) Return true if the protocol is equal to 132 (SCTP).
dhep () Return true if the flow contains DHCP traffic.

dns () Return true if the flow contains DNS traffic.

http () Return true if the flow contains HTTP traffic.

tcpflags ([val])

ip2num(ip)
ip2hex (ip)
ip2str(ip)
ip62str (ip)

ip6compress (ip)
ip6expand (ip[,trim])

ip2mask (ip)
mask2ip (m)
mask2ipstr (m)
mask2ip6 (m)
mask2ip6str (m)

ipinnet (ip,net [, mask])
ipinrange (ip, low, high)

localtime (t)
utc(t)
timestamp (t)

t2split (val, sep
[,num([, osep]])

splitc(vall,num[,osepl])
splitr(val[,num[, osep]])

valcontains (val, sep,item)
cvalcontains(val, item)
rvalcontains(val, item)

strisempty(val)
streqg(vall,val2)

If val is specified, return true if the specified flags are set.
If val is omitted, return a string representation of the TCP flags.

Convert an IP address to a number.
Convert an IPv4 address to hex.
Convert an IPv4 address to string.
Convert an IPv6 address to string.

Compress an IPv6 address.
Expand an IPv6 address.
If trimis different from 0, remove leading zeros.

Convert an IP address to a network mask (int).

Convert a network mask (int) to an IPv4 address (int).
Convert a network mask (int) to an IPv4 address (string).
Convert a network mask (int) to an IPv6 address (int).
Convert a network mask (int) to an IPv6 address (string).

Test whether an IP address belongs to a given network.
Test whether an IP address lies between two addresses.

Convert UNIX timestamp to string (localtime).
Convert UNIX timestamp to string (UTC).
Convert date to UNIX timestamp.

Split values according to sep.

If num is omitted or 0, val is split into osep separated columns.

If num > 0, return the num repetition.

If num < 0, return the num repetition from the end, e.g., -1 for last element.
Multiple num can be specified, e.g., "1;-1;2".

Output separator osep, defaults to OFS.

Split compound values. Alias for t2split (val, "_", num, osep).
Split repetitive values. Alias for t2split (val, ";", num, osep).

Return true if one item of val split by sep is equal to item.
Alias for valcontains (val, "_", item).
Alias for valcontains (val, ";", item).

Return true if val is an empty string.

Return true if vall is equal to val2.

5
Copyright © 2008-2024 by Tranalyzer Development Team

1.7 Functions

1

TAWK

Function

Description

strneq(vall,val2)
hasprefix(val,pre)
hassuffix(val, suf)
contains (val, txt)

not (q)

bfeq(vall,val2)
bitsallset (val,mask)
bitsanyset (val,mask)

isset (v)

isfloat (v)
isint (v)

isnum(v)
isuint (v)

isip(v)

isip6 (V)

isiphex (v)
isipnum(v)
isipstr(v)

join(a, s)
quote (s)

unquote (s)

chomp (s)
strip(s)
lstrip(s)
rstrip(s)

Return true if vall and val2 are not equal.
Return true if val begins with the prefix pre.
Return true if val finished with the suffix suf.
Return true if val contains the substring txt.

Return the logical negation of a query g.

This function must be used to keep the header when negating a query.

Return true if the hexadecimal numbers vall and val2 are equal.
Return true if all the bits set in mask are also set in val.
Return true if one of the bits set in mask is also set in val.

Return true if v is set, i.e., not empty, false otherwise.

Return true if v is a floating point number.

Return true if v is an integer.

Return true if v is a number (signed, unsigned or floating point).
Return true if v is an unsigned integer.

Return true if v is an IPv4 address in hexadecimal, numerical or
dotted decimal notation.

Return true if v is an IPv6 address.

Return true if v is an IPv4 address in hexadecimal notation.
Return true if v is an IPv4 address in numerical (int) notation.
Return true if v is an IPv4 address in dotted decimal notation.

Convert an array to string, separating each value with s.
Add leading and trailing quotes to a string s and

escape all quotes in s.

Remove leading and trailing quotes from a string s and
unespace all escaped quotes in s.

Remove leading and trailing spaces from a string s.
Remove leading and trailing spaces from a string s.
Remove leading spaces from a string s.

Remove trailing spaces from a string s.

ientropy ([num[,sc[,rev[,imin]]]])

mean (c)

min (c)

max (c)

Compute the Shannon (information) entropy of each column.
Set imin to filter out columns with low entropy (< imin).
Compute the mean value of a column c.

The result can be accessed with get_mean (c) or

printed with print_mean ([c]).

Keep track of the min value of a column c.

The result can be accessed with get_min (c) or

printed with print_min([c]).

Keep track of the max value of a column c.

The result can be accessed with get_max (c) or

6

Copyright © 2008-2024 by Tranalyzer Development Team

1 TAWK 1.7 Functions

Function Description

printed with print_max ([c]).

abs (v) Return the absolute value of v.

log2 (n) Return the binary logarithm (log base 2) of a.

max2 (a,b) Return the maximum value between a and b.

max3(a, b, c) Return the maximum value between a, b and c.

min2 (a,b) Return the minimum value between a and b.

min3(a, b, c) Return the minimum value between a, b and c.

aggr (fields[,val[,num]]) Perform aggregation of fields and store the sum of val.

fields and val can be tab separated lists of fields, e.g., $srcIP"\t"$dstIP.
Results are sorted according to the first value of val.
If val is omitted, the empty string or equal to "flows" or "packets"
(case insensitive), count the number of records (flows or packets).
If num is omitted or O, return the full list.
If num > 0 return the top num results.
If num < 0 return the bottom num results.
aggrrep (fields[,val[,num[,ign_e[,sepl]]])
Perform aggregation of the repetitive fields and store the sum of val.
val can be a tab separated lists of fields, e.g., $17BytesSnt"\t"$pktsSnt.
Results are sorted according to the first value of val.
If val is omitted, the empty string or equal to "flows" or "packets"
(case insensitive), count the number of records (flows or packets).
If num is omitted or O, return the full list.
If num > 0 return the top num results.
If num < 0 return the bottom num results.
If ign_e is omitted or 0, consider all values, otherwise ignore empty values.
sep can be used to change the separator character (default: "; ").

t2rsort (col[,num[, typel])

Sort the file in reverse order according to col.

(Multiple column numbers can be specified by using "; " as separator,

eg,1l ";" 2)

If num is omitted or O, return the full list.

If num > 0 return the top num results.

If num < 0 return the bottom num results.

type can be used to specify the type of data to sort:

"ip", "num" or "str" (default is based on the first matching record).
t2sort (col[,num[,typel,rev]]])

Sort the file according to col.

(Multiple column numbers can be specified by using "; " as separator,

eg,1l1 ";" 2)

If num is omitted or O, return the full list.

If num > 0 return the top num results.

If num < 0 return the bottom num results.

type can be used to specify the type of data to sort:

7
Copyright © 2008-2024 by Tranalyzer Development Team

1.7 Functions

1 TAWK

Function

Description

t2whois (ip[, o_opt])

wildcard (expr)

hrnum (num[,mode [, suffix]])
hrtime (secs[,mode[,unit]])

json([s])

texscape (s)
bitshift (n,t[,d[,bl])

nibble_swap(n[,b])

tobits (u, [b])

baseb64 (s)
base64d(s)
urldecode (url)
printbold(s, n)
printerr (s, n)
printinf (s, n)

printok (s, n)

printwrn (s, n)

diff(file[,mode])

"ip", "num" or "str" (default is based on the first matching record).
If rev > 0, sort in reverse order (alternatively, use the t2rsort () function).

Wrapper to call t2whois from tawk.

ip must be a valid IPv4/6 address.

o_opt is passed verbatim to t2whois -o option
(run t2whois -L for more details).

Print all columns whose name matches the regular expression expr.
If expr is preceded by an exclamation mark, return all columns whose name
does NOT match expr.

Convert the number num to human readable form.
Convert the timestamp (seconds) secs to human readable form.

Convert the string s to JSON. The first record is used as column names.
If s is omitted, convert the entire row.

Escape the string s to make it LaTeX compatible.

Shift a byte or of a list of bytes n to the left or right by a given number of bits t.
To shift to the left, set d to 0 (default), to shift to the right set d # 0.

Set b to 16 to force interpretation as hexadecimal,

e.g., interpret 45 as 69 (0x45) instead of 45.

Swap the nibbles of a byte or of a list of bytes n.

Set b to 16 to force interpretation as hexadecimal,

e.g., interpret 45 as 69 (0x45) instead of 45.

Convert the unsigned integer u to its binary representation.

Set b to 16 to force interpretation as hexadecimal,

e.g., interpret 45 as 69 (0x45) instead of 45.

Encode a string s as base64.
Decode a base64 encoded string s.
Decode the encoded URL url.

Print the string s in bold with an added newline.
If n is set, the trailing newline is omitted.

Print the string s in red to stderr.

If n is set, the trailing newline is omitted.

Print the string s in blue.

If n is set, the trailing newline is omitted.

Print the string s in green.

If n is set, the trailing newline is omitted.

Print the string s in orange.

If n is set, the trailing newline is omitted.

Compare two files (file and the input), and print the name and number of
the columns which differ. The mode parameter can be used to control the

8

Copyright © 2008-2024 by Tranalyzer Development Team

1 TAWK 1.8 Examples

Function Description

format of the output.

ffsplit ([s[,k[,h]]]) Split the input file into smaller more manageable files.
The files to create can be specified as argument to the function (one comma
separated string). If no argument is specified, create one file per column
whose name ends with Stat, e.g., dnsStat, and one for
pwxType (pw) and covertChannels (cc).
If k > 0, then only print relevant fields and those controlled by h, a
comma separated list of fields to keep in each file, e.g., "srcIP,dstIP".

flow([£f]) Return all flows whose index appears in £ (comma or semicolon separated).
Ranges may also be specified using a dash, e.g., flow ("1-3").
If £ is omitted, return the flow index.

packet ([p]) Return all packets whose number appears in p (comma or semicolon separated).
Ranges may also be specified using a dash, e.g., packet ("1-3").
If p is omitted, return the packet number.

follow_stream(f[,of[,d[,pf[,r[,ncl]]]])
Return the payload of the flow with index f.
of can be used to change the output format [default: 0]:
0: Payload only,
1: prefix each payload with packet/flow info,
2: JSON,
3: Reconstruct (pipe the output to xxd -p -r to reproduce the binary file).
d can be used to only extract a specific direction ("A" or "B")
[default: "" (A and B)].
pf can be used to change the payload format [default: 0]:
0: ASCII,
1: Hexdump,
2: Raw/Binary,
3: Base64.
r can be used to prevent the analysis of TCP sequence numbers
(no TCP reassembly and reordering).
nc can be used to print the data without colors.

shark (q) Query flow files according to Wireshark’s syntax.

1.8 Examples

Collection of examples using tawk functions:

Function Description

covertChans([val[,num]]) Return information about hosts possibly involved in a covert channels.
If val is omitted or equal to "flows", count the number of flows.
Otherwise, sum up the values of val.

9
Copyright © 2008-2024 by Tranalyzer Development Team

1.9 t2nfdump 1
Function Description
If num is omitted or O, return the full list,
If num > 0 return the top num results,
If num < 0 return the bottom num results.
dnsZT () Return all flows where a DNS zone transfer was performed.
exeDL([n]) Return the top N EXE downloads.

httpHostsURL ([£f])

nonstdports ()

passivedns ()

passwords ([val[,num]])

postQryStr([n])

Return all HTTP hosts and a list of the files hosted (sorted alphabetically).
If £ > 0, print the number of times a URL was requested.

Return all flows running protocols over non-standard ports.

Extract all DNS server replies from a flow file.

The following information is reported for each reply:
FirstSeen, LastSeen, Type (A or AAAA), TTL, Query, Answer,
Organization, Country, AS number

Return information about hosts sending authentication in cleartext.
If val is omitted or equal to "flows", count the number of flows.
Otherwise, sum up the values of val.

If num is omitted or O, returns the full list.

If num > 0 return the top num results.

If num < 0 return the bottom num results.

Return the top N POST requests with query strings.

ssh () Return the SSH connections.

topDnsA ([n]) Return the top N DNS answers.

topDnsIp4 ([n]) Return the top N DNS answers IPv4 addresses.
topDnsIp6 ([n]) Return the top N DNS answers IPv6 addresses.
topDnsQ([n]) Return the top N DNS queries.

topHttpMimesST (Return the top HTTP content-type (type/subtype).

[n])
topHttpMimesT ([n])
topSLD ([n])
topTLD ([n])

Return the top HTTP content-type (type only).

Return the top N second-level domains queried (google.com, yahoo.com, ...).

Return the top N top-level domains (TLD) queried (.com, .net, ...).

1.9 t2nfdump

Collection of functions for tawk allowing access to specific fields using a syntax similar as nfdump.

10
Copyright © 2008-2024 by Tranalyzer Development Team

1 TAWK 1.10 t2custom

Function Description

ts() Start Time — first seen
te() End Time — last seen
td () Duration

pr() Protocol

sa() Source Address

da () Destination Address

sap () Source Address:Port

dap () Destination Address:Port
sp () Source Port

dp () Destination Port

pkt () Packets — default input
ipkt () Input Packets

opkt () Output Packets

byt () Bytes — default input
ibyt () Input Bytes

obyt () Output Bytes

flg() TCP Flags

mplsl () MPLS label 1

mpls2 () MPLS label 2

mpls3() MPLS label 3

mpls4 () MPLS label 4

mpls5 () MPLS label 5

mplsé6 () MPLS label 6

mpls7 () MPLS label 7

mpls8 () MPLS label 8

mpls9 () MPLS label 9

mplsl0() MPLS label 10

mpls () MPLS labels 1-10

bps () Bits per second

pps () Packets per second

bpp () Bytes per packet
oline() nfdump line output format (-0 line)
olong() nfdump long output format (-o long)
oextended () nfdump extended output format (-o extended)

1.10 t2custom

Copy your own functions in this folder. Refer to Section 1.11 for more details on how to write a tawk function. To have
your functions automatically loaded, include them in the file t2custom/t2custom. load.

1.11 Writing a tawk Function

¢ Ideally one function per file (where the filename is the name of the function)

* Private functions are prefixed with an underscore

11
Copyright © 2008-2024 by Tranalyzer Development Team

1.12 Using tawk Within Scripts 1 TAWK

» Always declare local variables 8 spaces after the function arguments
* Local variables are prefixed with an underscore

» Use uppercase letters and two leading and two trailing underscores for global variables

Include all referenced functions

Files should be structured as follows:

#!/usr/bin/env awk
Function description

Parameters:
- argl: description
- arg2: description (optional)

Dependencies:
- pluginl
- plugin2 (optional)

Examples:
- tawk ‘funcname ()’ file.txt
- tawk ‘{ print funcname() }’ file.txt

S S o e e S e S S o o o S e

@include "hdr"
@include "_validate_col"

function funcname (argl, arg2, [8 spaces] _locvarl, _locvar2) {
_locvarl = _validate_col("colnamel;altcolnamel", _my_colnamel)
_validate_col ("colname2")

if (hdr()) {
if (__PRIHDR__) print "header"
} else {

print "something", $_locvarl, S$colname2

1.12 Using tawk Within Scripts

To use tawk from within a script:
1. Create a TAWK variable pointing to the script: TAWK="$T2HOME/scripts/tawk/tawk"

2. Call tawk as follows: $STAWK ‘dport (80)’ file.txt

12
Copyright © 2008-2024 by Tranalyzer Development Team

1 TAWK 1.13 Using tawk With Non-Tranalyzer Files

1.13 Using tawk With Non-Tranalyzer Files
tawk can also be used with files which were not produced by Tranalyzer.
* The input field separator can be specified with the -F option, e.g., tawk -F ‘,’ ‘program’ file.csv

* The row listing the column names, can start with any character specified with the -s option, e.g., tawk -s ‘#’
‘program’ file.txt

* All the column names must not be equal to a function or builtin name

e Valid column names must start with a letter (a-z, A-Z) and can be followed by any number of alphanumeric
characters or underscores

e If the column names are different from those used by Tranalyzer, refer to Section 1.13.1.

1.13.1 Mapping External Column Names to Tranalyzer Column Names

If the column names are different from those used by Tranalyzer, a mapping between the different names can be made in
the file my_vars. The format of the file is as follows:

BEGIN ({
_my_srcIP non_t2_name_for_srcIP
_my_dstIP = non_t2_name_for_dstIP

}

Once edited, run tawk with the -i $T2HOME/scripts/tawk/my_vars option and the external column names will be
automatically used by tawk functions, such as tuple2 (). For more details, refer to the my_vars file.

1.13.2 Using tawk with Bro/Zeek Files

To use tawk with Bro/Zeek log files, use one of —-bro or —-zeek option:

tawk -bro ‘{ program }’ file.logtawk -zeek ‘{ program }’ file.log

1.14 Awk Cheat Sheet

* Tranalyzer flow files default field separator is ‘\t’:
— Always use awk -F*\t’ (or awkf/tawk) when working with flow files.
* Load libraries, e.g., tawk functions, with -i: awk -i file.awk ‘program’ file.txt
e Always use strtonum with hex numbers (bitfields)
* Awk indices start at 1

¢ Using tawk is recommended.

13
Copyright © 2008-2024 by Tranalyzer Development Team

1.15 Awk Templates 1 TAWK

1.14.1 Useful Variables

¢ $0: entire line

e $1,%2,...,SNF: column 1, 2, ...

* FS: field separator

e OFS: output field separator

* ORS: output record separator

¢ NF: number of fields (columns)

¢ NR: record (line) number

e FNR: record (line) number relative to the current file
e FILENAME: name of current file

* To use external variables, use the —v option, e.g., awk -v name="value" ‘{ print name }’ file.txt.

1.14.2 Awk Program Structure

awk -F'\t’ -1 min -v OFS='\t’ -v h="$ (hostname)"

BEGIN { a = 0; b = 0; } # Called once at the beginning
/"B { at+ } # Called for every row starting with char A
/"B/ { b+ } # Called for every row starting with char B
{ ct++ } # Called for every row
END { print h, min(a, b), c } # Called once at the end
" file.txt

1.15 Awk Templates

¢ Print the whole line:

— tawk ‘{ print }’ file.txt

— tawk ‘{ print $0 }' file.txt

— tawk 'FILTER’ file.txt

— tawk ‘FILTER { print }’ file.txt

— tawk ‘FILTER { print $0 }’ file.txt

* Print selected columns only:

— tawk ‘{ print $srcIP, S$dstIP }’ file.txt
— tawk ‘{ print $1, $2 }’ file.txt
— tawk ‘{ print $4 "\t" $6 }’ file.txt

14
Copyright © 2008-2024 by Tranalyzer Development Team

TAWK 1.15 Awk Templates

— tawk ‘{
for (i = 6; 1 < NF; i++) {
printf "$s\t", $i
1
printf "%s\n", $NF
}rofile.txt

* Keep the column names:

tawk ‘hdr() || FILTER’ file.txt

awkf ‘NR == | | FILTER' file.txt

awkf ‘/”*%/ || FILTER’ file.txt
— awkf ‘/"%[[:space:]]*[[:alpha:]][[:alnum:]_]*$/ || FILTER’ file.txt

 Skip the column names:

— tawk ‘!'hdr() && FILTER’ file.txt
— awkf ‘NR > 1 && FILTER' file.txt
— awkf “!/"%/ && FILTER’ file.txt
— awkf “!'/*%[[:space:]]*[[:alpha:]][[:alnum:]_]*$/ && FILTER’ file.txt

¢ Bitfields and hexadecimal numbers:

— tawk ‘bfeq($3,0)’ file.txt

— awkf ‘strtonum($3) == 0’ file.txt

— tawk ‘bitsanyset($3,1)’ file.txt

— tawk ‘bitsallset($3,0x81)’ file.txt

— awkf ‘and(strtonum($3), 0x1)’ file.txt

* Split compound values:

— tawk ‘{ print splitc($16, 1) }’ file.txt # first element

— tawk ‘{ print splitc($16, -1) }’ file.txt # last element

— awkf ‘{ split($16, A, "_"); print A[1l] }' file.txt

— awkf ‘{ n = split($16, A, "_"); print A[n] }’ file.txt # last element

— tawk ‘{ print splitc($16) }’ file.txt

— awkf “{ split($16, A, "_"); for (i=1;i<=length(A);i++) print A[i] }’ file.txt

 Split repetitive values:

tawk ‘{ print splitr($16, 3) }’ file.txt # third repetition

— tawk ‘{ print splitr($16, -2) }’ file.txt # second to last repetition

— awkf ‘{ split($l6, A, ";"); print A[3] }' file.txt

— awkf ‘{ n = split($l6, A, ™;"); print A[n] }’ file.txt # last repetition
— tawk ‘{ print splitr($16) }’ file.txt

15
Copyright © 2008-2024 by Tranalyzer Development Team

1.15 Awk Templates 1 TAWK

— awkf “{ split($1l6, A, ";"); for (i=1;i<=length(A);i++) print A[i] }’ file.txt
« Filter out empty strings:

— tawk ‘!strisempty($4)’ file.txt
— awkf ‘! (length($4) == [] $4 == "\"\""m)7 file.txt

» Compare strings (case sensitive):

— tawk ‘streq($3,$4)’ file.txt
— awkf ‘$3 == $4’ file.txt
— awkf '$3 == \"text\"’ file.txt

» Compare strings (case insensitive):

— tawk ‘stregi($3,$4)’ file.txt
— awkf ‘tolower ($3) == tolower ($4)’ file.txt

» Use regular expressions on specific columns:

— awkf ‘$8 ~ /7192.168.1.[0-9]1{1,3}$8/" file.txt # print matching rows
— awkf ‘$8 !~ /7192.168.1.[0-9]1{1,3}$/" file.txt # print non-matching rows

¢ Use column names in awk:

— tawk ‘{ print $srcIP, S$dstIP }’ file.txt

— awkf
NR == 1 {
for (i = 1; 1 <= NF; 1i++) {
if ($1 == "srcIP") srcIP = 1
else if ($1 == "dstIP") dstIP = 1
}
if (srclIP == || dstIP == 0) {
print "No column with name srcIP and/or dstIP"
exit
}
}
NR > 1 {
print $srcIP, S$dstIP
}
' file.txt
— awkf
NR == 1 {
for (1 = 1; 1 <= NF; i++) {
col[$i] =1
}
}
NR > 1 {
print $col["srcIP"], S$col["dstIP"];
}
" file.txt

16
Copyright © 2008-2024 by Tranalyzer Development Team

1 TAWK 1.16 Examples

1.16 Examples
1. Pivoting (variant 1):

(a) First extract an attribute of interest, e.g., an unresolved IP address in the Host : field of the HTTP header:
tawk ‘aggr (ShttpHosts)’ FILE_flows.txt | tawk ‘{ print unquote($1l); exit }’
(b) Then, put the result of the last command in the badguy variable and use it to extract flows involving this IP:

tawk -v badguy="$(!!)" ‘host (badguy)’ FILE_flows.txt
2. Pivoting (variant 2):

(a) First extract an attribute of interest, e.g., an unresolved IP address in the Host : field of the HTTP header, and
store it into a badip variable:

badip="$ (tawk ‘aggr (ShttpHosts)’ FILE_flows.txt | tawk ‘{ print unquote ($1);exit }’)"
(b) Then, use the badip variable to extract flows involving this IP:

tawk -v badguy="S$badip" ‘host (badguy)’ FILE_flows.txt

3. Aggregate the number of bytes sent between source and destination addresses (independent of the protocol and
port) and output the top 10 results:

tawk ‘aggr (SsrcIP "\t" S$dstIP, $17BytesSnt, 10)’ FILE_flows.txt
tawk ‘aggr(tuple2 (), $17BytesSnt "\t" "Flows", 10)’ FILE_flows.txt

4. Sort the flow file according to the duration (longest flows first) and output the top 5 results:

tawk ‘t2sort (duration, 5)’ FILE_flows.txt
5. Extract all TCP flows while keeping the header (column names):

tawk ‘hdr() || tcp()’ FILE_flows.txt

6. Extract all flows whose destination port is between 6000 and 6008 (included):

tawk ‘dport ("6000-6008")" FILE_flows.txt
7. Extract all flows whose destination port is 53, 80 or 8080:

tawk ‘dport ("53;80;8080")" FILE_flows.txt
8. Extract all flows whose source IP is in subnet 192.168.1.0/24 (using host or net):

tawk ‘shost("192.168.1.0/24")’ FILE_flows.txt

tawk ‘snet("192.168.1.0/24")’ FILE_flows.txt

9. Extract all flows whose source IP is in subnet 192.168.1.0/24 (using ipinrange):

17
Copyright © 2008-2024 by Tranalyzer Development Team

1.17 FAQ 1 TAWK

tawk ‘ipinrange ($srcIP, "192.168.1.0", "192.168.1.255")" FILE_flows.txt
10. Extract all flows whose source IP is in subnet 192.168.1.0/24 (using ipinnet):
tawk ‘ipinnet ($srcIP, "192.168.1.0", "255.255.255.0")’ FILE_flows.txt
11. Extract all flows whose source IP is in subnet 192.168.1.0/24 (using ipinnet and a hex mask):
tawk ‘ipinnet ($srcIP, "192.168.1.0", Oxffffff00)’ FILE_flows.txt
12. Extract all flows whose source IP is in subnet 192.168.1.0/24 (using ipinnet and the CIDR notation):
tawk ‘ipinnet (SsrcIP, "192.168.1.0/24")’ FILE_flows.txt
13. Extract all flows whose source IP is in subnet 192.168.1.0/24 (using ipinnet and a CIDR mask):
tawk ‘ipinnet ($srcIP, "192.168.1.0", 24)’ FILE_flows.txt

For more examples, refer to tawk -d option, e.g., tawk -d aggr, where every function is documented and comes with a
set of examples. The complete documentation can be consulted by running tawk -d all.

1.17 FAQ
1.17.1 Can I use tawk with non Tranalyzer files?

Yes, refer to Section 1.13.

1.17.2 Can I use tawk functions with non Tranalyzer column names?

Yes, edit the my_vars file and load it using -1 $T2HOME/scripts/tawk/my_vars option. Refer to Section 1.13.1 for
more details.

1.17.3 Can I use tawk with files without column names?

Yes, but you won’t be able to use the functions which require a specific column, e.g., host ().

1.17.4 The row listing the column names start with a ‘#’ instead of a *%’...Can I still use tawk?

Yes, use the -s option to specify the first character, e.g., tawk -s ‘#’ ‘program’

1.17.5 Can I process Bro/Zeek log files with tawk?

Yes, use the --zeek option.

1.17.6 Can I process a CSV (Comma Separated Value) file with tawk?
The simplest way to process CSV files is to use the ——csv option. This sets the input and output separators to a comma
and considers the first row to be the column names.

tawk --csv ‘program’ file.csv

Alternatively, the input field separator can be changed with the -F option and the output separator with -0 *,’ or -v
OFS=",’. Note that tawk expects the column names to be the last row starting with a *%’. This can be changed with the
-s and -N options (Section 1.5).

tawk -F ‘,’ -v OFS=',’ -s "" -N 1 ‘program’ file.csv

18
Copyright © 2008-2024 by Tranalyzer Development Team

I TAWK 1.17 FAQ

1.17.7 Can I produce a CSV (Comma Separated Value) file from tawk?

The output field separator (OFS) can be changed with the -0 ‘fs’ or -v OFS=‘fs’ option. To produce a CSV file, run
tawk as follows: tawk -0 ‘,’ ‘program’ file.txt ortawk -v OFS=‘,’ ‘program’ file.txt

1.17.8 Can I write my tawk programs in a file instead of the command line?

Yes, copy the program (without the single quotes) in a file, e.g., prog. txt and run it as follows:
tawk -f prog.txt file.txt

1.17.9 Can I still use column names if I pipe data into tawk?

Yes, you can specify a file containing the column names with the -I option as follows:
cat file.txt | tawk -I colnames.txt ‘program’

1.17.10 Can I use tawk if the row with the column names does not start with a special character?

Yes, you can specify the empty character with -s "". Refer to Section 1.5 for more details.

1.17.11 1 get a list of syntax errors from gawk... What is the problem?

The name of the columns is used to create variable names. If it contains forbidden characters, then an error similar to the
following is reported.

gawk: /tmp/fileBndhdf:3: col-name = 3
gawk: /tmp/fileBndhdf:3: A syntax error

Although tawk will try to replace forbidden characters with underscore, the best practice is to use only alphanumeric
characters (A-7Z, a-z, 0-9) and underscore as column names. Note that a column name MUST NOT start with a number.

1.17.12 I get a function name previously defined error from gawk... What is the problem?

The name of the columns is used to create variable names. If a column is named after a tawk function or a builtin, then an
error similar to the following is reported.

gawk: In file included from ah:21,
gawk: from /home/user/tranalyzer2/scripts/tawk/funcs/funcs.load:8,
gawk: proto:36: error: function name ‘proto’ previously defined

In this case, you have two options. Either rename the column(s) in your file, e.g., proto — 14Proto or use tawk -t
option. With the -t option, Tawk tries to validate the column names by ensuring that no column names is equal to a
function name and that all column names used in the program exist. Note that this verification process can be slow.

1.17.13 Tawk cannot find the column names... What is the problem?

First, make sure the comment char (-s option) is correctly set for your file (the default is ‘%’). Second, make sure the
column names do not contain forbidden characters, i.e., use only alphanumeric and underscore and do not start with a
number. If the row with column names is not the last one to start with the separator character, then specify the line number
with the -N option as follows: tawk -N 3’ or tawk -s '#’ -N 2. Refer to Section 1.5 for more details.

19
Copyright © 2008-2024 by Tranalyzer Development Team

1.17 FAQ 1 TAWK

1.17.14 Wireshark refuses to open PCAP files generated with tawk -k option...

If Wireshark displays the message Couldn’t run /usr/bin/dumpcap in child process: Permission Denied.,
then this means that your user does not belong to the wireshark group. To fix this issue, simply run the following
command sudo gpasswd -a YOUR_USERNAME wireshark (you will then need to log off and on again).

1.17.15 Tawk reports errors similar to free () : double free detected in tcache 2

Tawk uses gawk -M option to handle IPv6 addresses. For some reasons, this option is regularly affected by bugs... If you
do not need IPv6 support, you can simply comment out line 653 in tawk:

OPTS=(
#-M -v PREC=256 # <—— Add the leading sharp ('#’) here

-v __PRIHDR__ =$PRIHDR
-v __UNAME__ ="$ (uname)"

1.17.16 Tawk -k reports errors similar to Couldn’t run dumpcap in child process: Permission denied

On some Linux distributions, capturing packets is only allowed as root or as a member of the wireshark group.

Run the following command to add yourself to the wireshark group.
$ sudo usermod -a -G wireshark $USER

Then, log out and log in again (or reboot) and the problem should be fixed!

More information on the Wireshark wiki.

20
Copyright © 2008-2024 by Tranalyzer Development Team

https://wiki.wireshark.org/CaptureSetup/CapturePrivileges

	tawk
	Description
	Dependencies
	Installation
	Usage
	–s and –N Options
	Related Utilities
	Functions
	Examples
	t2nfdump
	t2custom
	Writing a tawk Function
	Using tawk Within Scripts
	Using tawk With Non-Tranalyzer Files
	Awk Cheat Sheet
	Awk Templates
	Examples
	FAQ

