
Tranalyzer: Versatile High Performance Network
Traffic Analyser

Stefan Burschka Benoı̂t Dupasquier
Department of Traffic Mining and Network Security

RUAG Schweiz AG – RUAG Defence, Bern, Switzerland
firstName.lastName@ruag.com

sburschka01@qub.ac.uk bdupasquier01@qub.ac.uk

Abstract—IP-based networks are prone to hardware failures,
software errors and misconfigurations. This leads to service
outages, such as those experienced by American Airlines in 2015.
Moreover, cyber threats are becoming ever more sophisticated.
As demonstrated by recent success stories of malware, such
as the crimeware BlackEnergy, current defence solutions are
insufficient to detect those anomalies and threats. Indeed, the
widespread use of cryptography and obfuscation techniques
limits the effectiveness of standard solutions relying on content
inspection. Although statistical based approaches are able to deal
with some of these limitations, threats such as data exfiltration
and covert channels remain challenging to detect. This paper
presents Tranalyzer, a flow-based traffic analyser built upon a
flexible plugin-based architecture, allowing efficient processing
and analysis of network traffic. The program is presented through
a series of real-life scenarios dealing with traffic mining and
troubleshooting and provides the analyst with a methodology
on how to tackle such challenges, even when encryption or
obfuscation techniques are being used.

Index Terms—Network Security; Troubleshooting; Traffic
Forensics; Preprocessing; Data Mining; Big Data; Open Source.

I. INTRODUCTION

Ubiquitous computing and technological advances have
resulted in a dramatic increase in network traffic. With ever
more networked devices, IP infrastructures continue to become
larger and more complex, resulting in stability and security
issues. Policies such as bring-your-own-device (BYOD) and
the presence of legacy software and hardware (HW) increase
risks. Such problems can be alleviated by monitoring and
analysing network traffic. High speed networks, encryption
and huge volume of data render this task even more complex.
Data needs to be aggregated and reduced to a manageable
level. The challenge is to preserve useful features which could
potentially help in detecting anomalies, such as misconfigu-
ration problems, attacks or malicious traffic. An established
solution is flow based aggregation [1], [2] using only layer 3
and 4 features, such as the standard five-tuple, i.e., source and
destination IP/port and protocol.

Nevertheless, experience in real life troubleshooting and se-
curity operations of corporate, SCADA and operator networks
has revealed several shortcomings of existing tools, such as
the need for more flexible aggregation, e.g., using the VLAN
ID, network masks and layer 2 header features. In addition,

important aspects, such as scalability, performance and feature
provision for anomaly detection or traffic mining (TM) appli-
cations are not always met. To allow both researchers and
network administrators to analyse high volume traffic on- and
off-line, Tranalyzer 2 (T2), a lightweight flow analyser written
in C and containing a set of plug-ins for troubleshooting and
TM has been introduced to the open source community [3],
[4]. Built atop the libpcap [5] library, T2 accepts not only
IPv4/6, but also layer 2 and encapsulated packets, such as
MPLS, L2TP and GRE, from standard pcap files or live
interfaces. It is a memory-efficient flow aggregator which
facilitates the development of plug-ins by a well defined API.

The output is available in text or binary format that can
be used for further post-processing, e.g., using simple bash
commands or complex third party programs. In addition,
database, socket or even JSON output can be generated,
rendering the integration of T2 with existing Elasticsearch
and Kibana solutions seamless. Packet-based output, similar
to TShark, complements flow output and is an invaluable drill-
down feature.

The main focus is to provide security analysts and trou-
bleshooters with a methodology on how to perform traffic
mining, even in the presence of encryption or obfuscation.
Tranalyzer has been used in the past to solve TM problems,
such as SSH command guessing [6] or content guessing from
encrypted VoIP [7], and gaining new functionalities after every
analysis. The practical knowledge gained from these tasks has
led to the definition of an efficient work flow, starting with
large datasets beyond the terabyte range, and drilling down
from flows to specific packets which can further be analysed
using existing packet-based solutions such as Wireshark [8] or
tcpdump [5].

This paper is organised as follows: Section II discusses
related work and similar tools. Section III explains the concept,
basic architecture and functionality of Tranalyzer. The differ-
ent plug-ins, their output and application is also reviewed.
Section IV discusses some real-life traffic mining problems
on large complex datasets that were applied to T2. Section V
compares the performance of T2 against similar products.
Section VI summarises this work and highlights directions for
future work.

c© 2016 IEEE

firstName.lastName@ruag.com
sburschka01@qub.ac.uk
bdupasquier01@qub.ac.uk


II. RELATED WORK

In this section, several network analysis tools proposing flow
or packet-based analysis are reviewed.

Cisco NetFlow [9] is widely used and a de facto standard
in monitoring. It provides flexible flow aggregation through
masking of IP, ports, layer 2 interfaces and VLAN. It relies
on dedicated HW, which can be expensive and cannot be easily
extended to support configurable statistical features per flow
and AI classifiers. Tranalyzer was inspired by NetFlow and
supplies an IPFIX output plugin to serve NetFlow collector
tools such as QRadar [10], nfdump [11] or SSHCure [12].

sFlow [13] is an industry standard for sampled flow based
statistics. Similar to Cisco Netflow, it is built for high speed
traffic statistics and troubleshooting in cooperation with exist-
ing switches. L7 payload of all packets and packet statistics
per flow, necessary for encrypted TM, are not readily available.
L7 extraction support is also not supported.

Bro [14] is a highly capable and flexible network security
monitor providing flow based output similar to T2. It also
serves the forensics area by allowing layer 7 extraction, such
as HTTP and VoIP content, thus making it a good candidate
for a performance comparison. However, it lacks statistical
features for TM and troubleshooting, because it was not
initially designed for such tasks.

Tstat [15] has many years of experience in the troubleshoot-
ing area and provides a rich set of very useful features,
along with support for Bayesian classification and RRD [16]
monitoring. However, it lacks support for various types of
encapsulations, such as L2TP and MPLS, thus preventing a
performance comparison with Tranalyzer.

SiLK [17] is a collection of open source network traffic
analysis tools developed by the CERT NetSA. The output is
quite limited and matches that provided by the basicFlow and
basicStats plug-ins of T2, but lacking many statistical features
and anomaly flags. Furthermore, the custom binary output
format requires specific utilities to perform tasks as simple as
cut, cat, sort or count, while T2 relies on the tried and trusted
equivalent UNIX utilities which, combined with AWK, prove
far more powerful and flexible.

Wireshark [8] is a powerful packet oriented traffic analyser
with support for flow-based analysis. Although extremely
useful for investigating specific packets, this open-source tool
is not practical when dealing with “large” dumps (several GB),
where memory usage and loading time become prohibitive. It
has one of the most extensive list of protocol dissectors and
is able to extract layer 7 content. TShark, the command line
version of Wireshark, does not provide all the functionality of
its GUI counterpart, e.g., content extraction of SMB2 or FTP
traffic is not readily available.

Snort [18] is a well known open source Intrusion Detection
System (IDS). However, it has no TM capabilities, its main
task being searching for regular expressions at the packet or
cross-packet level.

TIE [19] is a 5-tuple flow based traffic classification en-
gine also implementing several AI based traffic classification

algorithms. Unfortunately, it is not fully available as open
source and most importantly, it does not support operator
and corporate characteristic traffic encapsulation. In addition,
according to the website, most of the plugins are not in a stable
state. Troubleshooting and forensic support was also elusive.

Haddadi et al. [20] compare the ability of features provided
by five open source tools, namely Maji, YAF, Softflowd, T2
and Netmate, to detect botnets, such as Zeus and Conficker.
Results show that T2 combined with the C4.5 algorithm
outperforms the others in terms of detection rate and false
positive rate, even though only numeric fields were used.

To conclude, although several network traffic analysis tools
exist, few of them meet all the requirements for practical TM,
troubleshooting and security application in real corporate or
operator environment. Some important aspects are flexibility,
simplicity, support for encapsulation, speed and easy to pro-
cess output. For example, most of the tools do not support
encapsulations, such as L2TP or MPLS, and only use the
standard five tuple for flow aggregation, which limits their
usefulness in telco environments. Moreover, important forensic
features, e.g., the link between flows, packets and content is
mostly not available, except for Bro, TShark and Wireshark.
Hence, those tools will be used for a performance comparison
with Tranalyzer 2.

III. T2 ARCHITECTURE

This section presents an overview of T2 architecture, func-
tionality and usage.

A. Basic Functionality and Organization

Tranalyzer consists of a core and a set of plug-ins which can
be activated depending on the user needs. The core performs
flow aggregation and management, while the plugins receive
notifications when a flow is created, terminated or timed-
out and when a new packet is available. The global flow
architecture is depicted in Fig. 1.

Fig. 1. Tranalyzer functional diagram

Although T2 is flow-based, it also features a packet mode,
similar to TShark, but easier to parse and providing a unique
numerical ID linking every packet to its flow. In addition,
an alarm mode allows Tranalyzer to act as an IDS, only
generating output when requested by one or more plugins,



such as AI classifiers or regular expressions matches. The
force mode enables each plugin to terminate flows on demand
if certain conditions are met, such as counter overflow. The
monitoring mode produces configurable key parameters at
regular intervals which can be fed into tools such as RRD.
All modes can operate concurrently. Professional network
operations demand high speed and stable execution. Therefore,
most of the configuration options are stored in a header file
and require recompilation if changed. Although this approach
might seem cumbersome at first, the gain in speed makes this
effort worthwhile. Furthermore, thanks to the concept of plug-
ins, T2 can be easily and efficiently tailored and optimised to
the task at hand. A nifty feature is the ability to bind Tranalyzer
to a single core in a multicore processor. This can be used to
run several T2 in parallel using different configurations, e.g.,
IPv4, IPv6 or layer 2 flows.

To summarise, T2 performs the following main tasks:
• Packet capture,
• Packet-to-flow allocation,
• Flow timeout handling,
• Plug-in function invocation,
• Flow/packet based output formats.

B. Packet-to-Flow Allocation

Standard flow-based analysis tools rely on a standard five
tuple, namely source/destination IP and port, and protocol
number. When working with large corporate networks, the
need for a more general concept becomes apparent. Therefore,
Tranalyzer proposes to extend the five tuple to a six to nine
tuple, where the sixth element is the VLAN ID and the tuple
above are the MAC addresses and the EtherType. For added
flexibility, source and destination addresses can be masked to
identify subnets instead of hosts, fields can be ignored and
port ranges can be aggregated into a single flow.

The benefits of such aggregations are manifold. First, the
number of flows and therefore the size of the output is reduced.
Second, the aggregation provides a higher level overview
of the network operations. In addition, subnetworks can be
labelled according to user defined subnet numbers, enabling
the user to rapidly identify relevant traffic flow clusters in high
volume flow files.

Finally, contrary to many existing tools, Tranalyzer is aware
of the flow direction, e.g., client→ server and server→ client,
and labels it as A and B flows, respectively. Moreover, the
initiator of the connection is detected and different flows can
be linked together, e.g., FTP communication and data flows
or ICMP message and flow which caused the message. This
facilitates connection oriented traffic analysis.

The next section presents an overview of the different plug-
ins available.

C. Plug-ins

The open source version of Tranalyzer comes with the
following plug-ins and functionalities:

• Statistics about ICMP traffic and flow tracking,
• Geo-localization of IP addresses,

• MAC addresses and manufacturers,
• Classification based on nDPI [21] or port,
• Basic and descriptive statistics,
• Connection counter (Section IV-C)
• Statistics based on the N first packets,
• TCP state machine and flags analyser,
• Text, binary and JSON output.

Some of the currently closed source plugins include:

• Web, email, routing, name resolution and VoIP decoders
and analysers,

• Covert channels detector,
• Password extractor,
• Regular expressions,
• Math and AI: centrality (Section IV-D), entropy, wavelet,

bayes, ESOM (Section IV-G)
• Database, TCP/UDP Socket and Netflow output.

In addition, a set of scripts to convert the output to a
variety of open source tools, such as RRD [16] or Gnuplot
are provided.

T2 supports easy plugin development by supplying all point-
ers to dissected protocol layers and packet features, including
flow timeout. This timeout, can be changed at each packet
event, facilitating the implementation of state machines for
protocol anomaly detection. Furthermore, features produced
by one plugin can be shared with subsequent plugins. For a
comprehensive list of plugins, scripts and features refer to [3].

The next section discusses various real-life scenarios and
how Tranalyzer was used to solve those challenging cases.

IV. SCENARIOS

In order to illustrate the potential of Tranalyzer, some
practical cases are shortly discussed. All cases have in com-
mon the traffic mining methodology which is independent
of the L7 content and thus encryption. It involves a top
down procedure starting with the initial end report of T2,
providing global situational awareness, e.g., data acquisition
problems and insights into malicious activities. The next step
consists of evaluating the global statistical summaries for layer
4 protocols, detailed statistics about ICMP messages and port
distribution for TCP, UDP and SCTP traffic. This provides
an overview of the type of traffic and its relevance and directs
the analyst towards specific questions, such as “biggest talker”,
protocol or connection anomalies or QoS problems.

These questions can be formulated using bash commands or
command line based languages, such as AWK or Perl. This is a
recursive process, which ends when the few relevant flows are
detected. Using this reduced set of flows, further drill-down
to the packet level can be performed.

In practice, T2 has been successfully used in:

• Troubleshooting,
• Operational picture and monitoring,
• Traffic classification,
• Malware and anomaly detection,
• Forensics and content extraction.



A. Troubleshooting
Troubleshooting large critical infrastructures often requires

analysing several TB of traffic data in order to find the source
of a problem. In addition, the cause of the problem might be
unknown and no information about the data acquisition might
be available, e.g., due to privacy issues. Therefore, T2 labels
faults happening during data acquisition, such as insufficient
snap length, time synchronization problems, MTU and QoS
problems. Global warnings about the quality of the data are
issued and potentially corrupt flows are flagged, providing a
measure of relevance and trust, not only for the whole pcap,
but also for every flow. In addition, the effective bandwidth
and the average number of flows per second are calculated,
providing additional information about the soundness of the
data.

Furthermore, certain statistical features, such as the number
of unique IP talkers and listeners, provide an insight into the
topology of the network under scrutiny. Distinguishing sub-
networks from one another is also a key factor for rapid un-
derstanding of the traffic flow and to categorize the importance
of the traffic. Hence, T2 offers the automatic labelling of flows
according to user defined subnet numbers.

A lot of network and application problems can be found
by passively evaluating round-trip measurements [22]. The
tcpFlags plugin measures trip and round-trip times (TT and
RTT ) for all layer 4 protocols as well as the jitter (

√
J) ac-

quired from the point of traffic acquisition. Moreover, several
TCP related parameters are produced, such as window size
evolution, SEQ/ACK number faults, maximum segment size
(MSS), boot time, etc.

This enables the troubleshooter to estimate a maximum
possible bandwidth per machine and even per application [23],
[24]. Especially voice applications, such as Skype or SIP/RTP,
can thus be assessed on a flow basis, even when RTCP is not
present. Specific plugins are available to extract and compute
QoS parameters.

The following section explains how T2 estimates the round-
trip time and the jitter.

1) Trip and round trip time estimation: The basis of the
round-trip time and the jitter is the estimation of a correct
trip-time between two hosts x and y during the lifetime
of the corresponding A or B flows separately. In order to
remove the reaction times of the hosts and the human operator,
the SYN-SYN/ACK-ACK sequence can be evaluated, if TCP
traffic is present. Nevertheless for certain protocols, where
human interaction is not present and program reaction times
are minimal, e.g., P2P, voice, video, etc., a continuous TT
estimation during the flow proves useful to pinpoint problems
at the host, application or network level. Then, the TT can
be calculated during flow life time using a modified infinite
impulse response (IIR) first order filter. To assure the same
accuracy as if calculated at the end of the flow from a complete
distribution, the IIR filter constant has to become flexible on
a packet per packet basis.

Let i ∈ N be the number of packets sent from host x to
host y (A flow) or from y to x (B flow). Let TT (x, y)i be

the estimated trip time between x and y, and ∆ti+1 the time
difference between the last packet i received in the A flow
and the new one i + 1 acquired in the B flow. Then, the new
estimated trip time in the B flow is computed as:

TT (x, y)i+1 =

(
1− 1

i

)
TT (x, y)i +

∆t(x, y)i+1

i
(1)

This leads to the following equation for the RTT :

RTTi+1 = TT (x, y)i+1 + TT (y, x)i+1 (2)

For TCP traffic, the difference between the SYN-
SYN/ACK-ACK sequence and the RTT IIR estimate in
combination with the window size evolution statistics helps to
find application and network problems. For voice applications,
the jitter

√
J is an important parameter. It can be estimated

from the IIR filtered variance J derived from TT :

J(x, y)i+1 =

(
1− 1

i

)
J(x, y)i +

(∆ti+1 − TT (x, y)i+1)
2

i
(3)

The corresponding RTT jitter variance is then:

Ji+1 = J(x, y)i+1 + J(y, x)i+1 (4)

In practice, the quality of the J measure was confirmed by
acquiring RTCP jitter packet information from the SIP clients
in an operator network.

2) The Invisible TCP Flows: A multimedia hosting centre
for 5000 users reported a sudden disruption of certain of-
fice services and unmotivated delays, although the network
throughput was generally excellent. T2 was applied to a
prominent entry point, a firewall, supervising all ingress and
egress traffic. The final T2 report of a 11TB pcap revealed
that protocols such as SMB and MS SQL had a large global
packet flow asymmetry of 0.76 (Eq. 5).

A =
(pktsA− pktsB)

(pktsA + pktsB)
(5)

As TCP requires constant two-way communication, such an
asymmetry is a very suspicious result if all traffic is present
in the pcaps. By sorting the flow file according to the biggest
talker and to the highest packet flow asymmetry, established
TCP flows with packets and bytes asymmetry of +1.0 emerged.
Hence, established unidirectional TCP flows.

The tcpFlags plugin sums all differences between ACK
numbers, revealing that not all opposite flows were seen. The
large amount suggested a routing problem. After checking the
said firewall and change logs, a misconfiguration was detected,
blocking an outbound high port range. The usage of OSPF
dependent routing the existence of a low performing gateway
bridging the firewall from another section of the network via
the Internet back to the customers revealed finally the nature
of the anomaly.



3) Unexplained Response Times: A deadlock on a produc-
tive Oracle DB in a large call centre produced substantial
and random delays for the agents. The application of T2 to
a 6TB pcap gathered over two weeks showed unusually high
amount of TCP flows timed out and matched the reports of
the agents. By simply sorting the flow file for the biggest
talkers in term of packets and bytes transmitted and destination
connection count per source IP, the Oracle server was instantly
top listed. The suspicion was confirmed by the TCP anomaly
flags showing multiple retries directed to the same destination
(the DB) combined with several flows being timed out. Finally,
the Oracle server logs revealed that both the client and server
program submitted an unnecessary large amount of SQL
code to the DB ending in spurious deadlocks, causing the
experienced long delays and interruptions.

4) Load Balancing and Failover: In order to effectively
troubleshoot load balancing or failover problems the plugin
macRecorder tracks, for each flow, all layer 2 MAC address
pairs present during the lifetime of the flow, including packet
counts for each layer 2 path. A HW failure at a telecom
operator could be detected by calculating an overall MAC pair
packet asymmetry over multiple flows, similar to Equation 5.

B. ARP Spoofing

T2 is able to create pure layer 2 flows. Thus, a well known
tool arpwatch [25] could be replaced by one plugin, namely
arpDecode, dissecting all information about ARP messages
per flows including anomaly bits for all kinds of ARP spoofing.
In combination with the alarm mode, only flows which might
indicate ARP spoofing are released, thus achieving similar
functionality as arpwatch.

C. Connection Anomaly Detection

A prominent security problem is the horizontal spread
of malware in a corporate network normally undetected by
perimeter defence. The easiest give-aways are anomalies in
host traffic patterns, which can be readily discovered by
looking at the global statistics file. A flat and even global port
distribution or the evolution of host connections per flow/time
are efficient methods to assess the role of a machine. The latter
produces a simple and intuitive anomaly measure, namely
the number of connections from source to destination IP and
between source and destination IP during the lifetime of a flow.
By combining the flow creation time, source IP and source IP
connection value in a 3D-waterfall plot, the evolution of a
whole network can be monitored. As depicted in Fig. 2, a
botnet clearly reveals its nature over time on the left side of
the IP axis, while smaller peaks on the right side denote P2P
streams. All the normal client traffic shows insignificant low
counts.

D. Centrality

The connection anomaly detection problem is better ad-
dressed by the so called centrality, a principal component
analysis (PCA) of the connection matrix containing either
binary values or any other flow variable, such as the number

Fig. 2. connectionCounter plugin time series

of flows, packets or bytes transmitted between two peers.
The type of entries in the connection matrix can be chosen
depending on what anomaly is being targeted. For example,
binary entries are good detectors for network anomalies and
number of flows are more appropriate for malware detection.
The largest eigenvector of the connection matrix represents the
importance of an IP in the overall layer 3 network.

The centrality plugin computes this matrix every N seconds
and produces an output, which can be post-processed by an
AWK script generating the waterfall graph depicted in Fig. 3.

Fig. 3. centrality plugin time series, Number of flows/IP pair

Centrality reveals a steadier and more discriminable
anomaly signature than the more volatile one generated by
the connection plot (Fig. 2). The walls on the left with highest
centrality denote IPs/clients with malware operation. The floor
denotes normal clients, while the scattered smaller walls on the
right denote P2P clients. A publication about centrality is in
preparation.

E. Packet Signal Processing

Nowadays, communication via Internet is generally en-
crypted. Some applications even use layer 7 protocols as covert
transport. This limits the effectiveness of standard approaches,
as content cannot be inspected. Nevertheless, statistics such as
packet length (PL) and inter-arrival time (IAT) can be used to
classify such encrypted data. Even information regarding the
payload can still be inferred. Many application programmers
use existing cryptographic and audio libraries. These third
party products can influence layer 4 features, such as PL and
IAT.

In addition, most protocols are based on a state machine.
The different states can often be distinguished in the packet
stream. The initialisation phase is often short (the first 10



packets) and can be used as a signature to identify certain
protocols or to infer information about the nature of the en-
crypted traffic [26], [27]. The following longer phase consists
of the actual (encrypted) content, e.g., SSH [6] or Skype [7],
which can actually be estimated by applying methods of signal
processing, such as scalar Kalman filters [7] or cepstrum
analysis, provided that the maximum necessary bandwidth of
the signal is properly estimated and correctly sampled [28].

F. Statistical Anomaly Detection

Aggregating the PL and IAT information of a flow into a
two-dimensional histogram serves as a signature for statistical
TM methods. The shape of the PL distribution alone is very
specific for the type and content of the traffic, thus training
supervised AI classifiers such as ANN or Bayes yield good
results [26], [27]. T2 supplies such a configurable distribution
for each flow, which can be accessed by any subsequent plugin.
All high order descriptive statistics for traffic mining depend
on this distribution. A sample distribution of a HTTP tunnelled
Skype distribution is depicted in Fig. 4.

Fig. 4. 3D PL and IAT distribution of Skype

The non-uniform shape of the distribution suggests that
Skype traffic can be statistically identified and information
about its content is leaked [7]. To prevent such statistical
fingerprinting, developers of multimedia applications should
aim towards a uniform distribution of the PL-IAT signature,
e.g., by using sophisticated padding. The PL-IAT distribution
also serves as the basis for the descriptiveStats plugins, used
for unsupervised TM of unknown traffic (Section IV-G).

G. Anomaly Detection using ESOM

For encrypted traffic containing unknown problems, a high
performance Kohonen type emergent self-organizing map
(ESOM) [29] can be trained in an unsupervised way. The
resulting model can be loaded by the esomClassifier plugin,
serving as a black box classifier. The training process creates
a 2D anomaly visual chart using, e.g., the multidimensional
output of the descriptiveStats plugin. Each point in the map
represents one or several flows, clustered according to their
statistical similarity (Fig. 5). A high level structural analysis
can be conducted to detect unusual patterns such as “wings”

(botnet), worms (P2P) or a few isolated elevated dots (unautho-
rized DNS zone transfer) in normal “green” traffic (browsing,
email, etc.). Often the regions have to be investigated in more
detail. Thus, a drill down to the flow information behind
each dot or group of dots is possible. Even a forensic drill
down to the packet level is available, with the possibility to
automatically load selected flows/packets into Wireshark. A
detailed description of all features of the ESOM is beyond the
scope of this paper. For more detailed information, the reader
is referred to [30].

Fig. 5. Traffic Classification using ESOM

H. Monitoring Mode
The monitoring mode of T2 produces a RRD database

which can be queried using a provided AWK script. The script
generates a graph which is updated at a chosen interval, e.g.,
every second. What makes this mode really powerful is that the
features which can be monitored can easily be configured by
the user. For example, the number of Jumbo Frames packets
(ethertype 0x8870), the number of L2TP (IP protocol 115)
or the number of packets sent over TCP port 22 or UDP
port 53 can all be monitored. By default, standard values
such as number of flows, bytes, packets or alarms are output.
Simultaneous monitoring of two fields, such as the number of
DNS queries and responses is also possible. Fig. 6 illustrates
the monitoring of the number of flows. The black line represent
the data forecast by Holt-Winters [31].

Fig. 6. Monitoring Flows

Thanks to the continuous tab separated stream of data,
additional monitoring or forecasting methods can be easily
tested. For example, in order to build an improved anomaly
detection algorithm based on Holt-Winters, a simple phased
locked loop (PLL) can be added to render the system more
resilient against disturbances.



I. Forensic Packet Mode

The packet mode of T2 provides a column based packet
view, where each packet is linked to a flow by a unique flow
index. Hence, an easy drill down from flow to packets and back
is possible. By selecting a specific flow index, the Wireshark
feature Follow TCP stream can be easily reproduced. The
findexer plugin was specially developed for fast extraction of
flows from large pcap files. Thus, malware operations can be
detected by analysing the flow output with simple measures
such as bit fields or connection oriented anomalies and then
isolated in a new pcap. In the packet mode, several flow-based
features such as anomaly bitfields can be followed over time
and a flow sequence analysis can be extracted from the packet
file.

J. Forensic Content Extraction

The key objective in traffic troubleshooting and forensics
on large datasets is to use the fastest and most efficient
way to locate the problem and to establish a timeline. Thus,
flows of different protocols such as UDP and ICMP can
be automatically linked. Using global summaries first, then
the aggregated flow representation, flows of interest can be
isolated. After extracting these flows, a forensic analyst might
be interested in inspecting the payload. Although encryption
is widely used, unencrypted traffic, such as HTTP or POP3
are still commonplace. T2 can extract all content including
multimedia data, such as pictures, videos or attachments, even
when packets are out of sequence. The files are stored under
user defined directories and named according to the original
filename, the flow index, the direction and the packet number
in the flow. This naming convention allows the analyst to
instantly map the extracted data to the flow and back to the
packet.

In the following section, the performance of T2 processing
and content extraction is evaluated against Bro, TShark and
Wireshark.

V. PERFORMANCE EVALUATION

To evaluate T2 0.6.6 performance, some equally capable
open source tools were tested on the same data and under
similar configurations. Wireshark [8], TShark and Bro [14]
are established solutions for network traffic analysis and as
such were selected. Many tools, such as Justniffer [32] and
tcpxtract [33], were quickly dismissed, as they could not cope
with all the necessary protocol encapsulations.

Initially two pcaps of 44 and 41 GB respectively were
chosen. The first one was recorded with reduced snap length
in a corporate network and covers a period of an hour. The
second one was captured with full snap length by a network
operator. It only covers about 3 min and 40s, but has more
IPs/s. Both pcaps contain a variety of layer 4 protocols and
layer 2 encapsulations, including VLAN and MPLS, plus
several cleartext and encrypted L7 protocols. The operator
pcap also contains scans, routing anomalies, snapped, mangled
and resequenced packets, which are good indicators of the
resilience of a tool.

Table I provides more detailed information about the files.

Origin Duration[s] Size[GB] Gb/s Act IPs SnapLen
Corporate 3662 44 0.7 1038546 80
Operator 227 41 1.5 177448 1800

TABLE I
PCAP STATISTICS

Wireshark, TShark, Bro and T2 were installed on the same
machine with an Intel i7-4930K CPU, Linux Arch 4.2.5-1
and 64GB of memory. Tests on the same HW running Linux
Ubuntu 15.10 revealed similar results. The wall-clock time
was measured by using the Unix command time. Wireshark
and TShark were reconfigured to be more efficient, e.g., all
automated resolution was switched off. Bro was configured
to load the same amount of protocol dissectors as T2. All
tests were conducted 10 times and the average runtime was
selected.

Bro processed the operator pcap in 424s while T2 only used
half of that time (216s). Wireshark could not cope with this
amount of data. The time required to complete the corporate
pcap was 68 min for Bro and a factor of two faster (32 min) for
T2. Bro and T2 proved resilient and were able to process both
files, despite the reduced snap length and packet anomalies.

In order to compare T2 with Wireshark and TShark, a 1.3GB
subset was extracted from the operator pcap. Although only
covering a duration of 6s, it contains more than 21000 active
unique source IPs, 400 IP pairs at an average and maximal
rate of 1.5Gb/s and 5Gb/s, respectively, with 74608 flows.

Wireshark loaded and processed the pcap file in 20s, while
the extraction of multimedia and other content took more than
2 hours and 45 minutes. Moreover, 100% CPU was used until
the save button was pressed, resulting in an error message
stating that not all pictures could be saved. This error might
be intended to report pictures which are not complete, e.g.,
missing packets. TShark needed more than 35 minutes to
extract the same data. Bro was faster and processed the file in
17s. Extracting the content required and additional 12.2s, for
a total of 26.2s. T2 loaded and extracted all content with 29
protocol dissection and statistical plugins in 11.8s. Included
in this time is the generation and simultaneous write of flow
and global statistical and mining files including all HTTP and
RTP VoIP.

Finally, Table II summarises the loading and processing time
of the different tools and cases.

VI. CONCLUSIONS

In this paper, Tranalyzer 2, a high-volume network traffic
pre-processor and analyser was presented through a series of
real-life scenarios. The tool supplies flow and packet based
output, both of which are easy to parse and interface with
various databases and SIEMs. Standards such as Splunk, IBM
QRadar and IPFIX/NetFlow are all supported. In addition,
several post-processing scripts are provided, facilitating the
interaction with existing graphical tools such as RRD, Gnuplot
or Graphviz.



Tool Configuration Time [s]
T2 all open-source plugins (13) 6.4
T2 29 protocol plugins 10.6
T2 HTTP + SIP/RTP content extraction + 29

protocol plugins
11.8

Bro without saving content on disk 17.0
Bro saving content on disk 26.2

Wireshark load and process 20.0
TShark HTTP content extraction without RTP 2142.0

Wireshark HTTP content extraction without RTP 12540.2

TABLE II
RUNTIME PERFORMANCE OF VARIOUS TOOLS ON A 1.3GB PCAP

A large amount of statistical key features emerged from
practical experience and facilitate analyses in the area of
network and application security and troubleshooting. As a
platform for rapid development of new intelligent sensors, T2
also became a useful tool in research, particularly for traffic
preprocessing to train AI classifiers for anomaly detection.

Various scenarios in the area of troubleshooting, encrypted
TM and content extraction for forensics have been discussed.
Those real-life cases have highlighted the ability of T2 to
compete with, or even replace, existing tools, such as arpwatch
or TShark. Even the well established Wireshark and Bro
showed shortcomings which T2 was able to complement or
even overcome. Run-time performance tests on real world
traffic on COTS HW showed that T2 was faster than Bro,
TShark and Wireshark by a factor of two, twenty and thousand,
respectively.

In conclusion, T2 has evolved into an extremely power-
ful and versatile tool, truly the Swiss army knife of net-
work/security analysts, troubleshooters and researchers.

VII. FUTURE WORK

Current directions explored by T2 development team are
Wireless-specific plugins, Bluetooth traffic and Telecom pro-
tocols, such as SIGTRAN. To complement existing signal
processing and AI plugins, neural networks, FFT, cross-
correlation and shapelets plugins have to be added. Finally,
regular expressions and matrix processing are bottlenecks
which slow down the system. Thus, an area of research
pursued by Tranalyzer team is the combination of dedicated
HW, e.g., graphic cards, and software to speed up the system
and address the regime beyond 10 Gb/s.

ACKNOWLEDGMENTS

The open source version of Tranalyzer is maintained and
funded by RUAG Schweiz AG – RUAG Defence and the Swiss
Armed Forces. In this context, we would like to thank R.
Sibilia, for his continuous support and fruitful discussions. We
are very grateful to T. Ruehl, A. Davolos, F. Albanese and N.
Thalheim for their constant efforts in improving Tranalyzer.

REFERENCES

[1] S. Song, L. Ling, and C. N. Manikopoulo, “Flow-based statistical
aggregation schemes for network anomaly detection,” in ICNSC. IEEE,
2006.

[2] T.-F. Yen and M. K. Reiter, “Traffic aggregation for malware detection,”
in Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, vol. 5137.

[3] Tranalyzer Team, “Tranalyzer home page,” Jul. 2016. [Online].
Available: http://tranalyzer.sf.net

[4] S. Burschka, T. Ruehl, and F. Buehlmann, “Tranalyzer – netflow
extension,” in Proceedings of the 78th IETF, Jul. 2010. [Online].
Available: https://www.ietf.org/proceedings/78/slides/NMRG-7.pdf

[5] T. . Libpcap, “Tcpdump/libpcap public repository,” Jul. 2016. [Online].
Available: http://www.tcpdump.org

[6] J. R. Borque, “Encrypted traffic mining: Ssh command guessing,”
Master’s thesis, EURECOM, Sophia Antipolis, France, 2007.

[7] B. Dupasquier, S. Burschka, K. McLaughlin, and S. Sezer, “On the
privacy of encrypted skype communications,” in GLOBECOM. IEEE,
Dec. 2010.

[8] The Wireshark Foundation, “Wireshark home page,” Jul. 2016. [Online].
Available: https://www.wireshark.org

[9] B. Claise, “Cisco systems netflow services export version 9. rfc 3954.”
Oct. 2004. [Online]. Available: https://www.ietf.org/rfc/rfc3954.txt

[10] IBM, “Ibm security qradar siem,” Jul. 2016. [Online]. Available:
http://www.ibm.com/software/products/en/qradar-siem

[11] NFDUMP, “Nfdump,” Jul. 2016. [Online]. Available: http://nfdump.sf.
net

[12] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “Sshcure: a flow-based ssh intrusion detection system,” in
Dependable Networks and Services, ser. Lecture Notes in Computer
Science, vol. 7279. Berlin, Germany: Springer Verlag, Jun. 2012.

[13] sFlow, “sflow,” Jul. 2016. [Online]. Available: http://www.sflow.org
[14] Bro, “The bro network security monitor,” Jul. 2016. [Online]. Available:

https://www.bro.org
[15] Telecommunication Networks Group – Politecnico di Torino, “Tstat:

Tcp statistic and analysis tool,” Jul. 2016. [Online]. Available:
http://tstat.polito.it

[16] T. Oetiker, “Rrdtool home page,” Jul. 2016. [Online]. Available:
http://oss.oetiker.ch/rrdtool

[17] CERT NetSA, “Silk: Cert netsa security suite: Monitoring for large-scale
network,” Jul. 2016. [Online]. Available: http://tools.netsa.cert.org/silk

[18] M. Roesch, “Snort,” Jul. 2016. [Online]. Available: https://snort.org
[19] A. Dainotti, W. de Donato, A. Pescape, and G. Ventre, “Tie: a

community-oriented traffic classification platform,” in TMA, 2009.
[20] F. Haddadi and A. N. Zincir-Heywood, “Benchmarking the effect of flow

exporters and protocol filters on botnet traffic classification,” Systems
Journal, IEEE, no. 99, Nov. 2014.

[21] ntop, “ndpi: Open and extensible lgplv3 deep packet inspection
library,” Jul. 2016. [Online]. Available: http://www.ntop.org/products/
deep-packet-inspection/ndpi

[22] H. Jiang and C. Dovrolis, “Passive estimation of tcp round-trip times,”
SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, Jul. 2002.

[23] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic be-
havior of the tcp congestion avoidance algorithm,” SIGCOMM Comput.
Commun. Rev., vol. 27, no. 3, Jul. 1997.

[24] M. Mathis, J. Heffner, and R. Reddy, “Web100: Extended tcp instru-
mentation for research, education and diagnosis,” SIGCOMM Comput.
Commun. Rev., vol. 33, no. 3, Jul. 2003.

[25] L. N. R. Group, “arpwatch: the ethernet monitor program,” Jul. 2016.
[Online]. Available: http://ee.lbl.gov

[26] N. Guerin, “Encrypted traffic mining for anomaly detection,” Master’s
thesis, EURECOM, Sophia Antipolis, France, 2005.

[27] D. Piccito, “Traffic mining in ip tunnels,” Master’s thesis, EURECOM,
Sophia Antipolis, France, 2006.

[28] A. Davolos, “A feasibility study of signal processing on ip flows towards
traffic classification,” Master’s thesis, Politecnico di Torino, Italy, 2009.

[29] A. Ultsch, “Self-organizing neural networks for visualization and classi-
fication,” in Information and Classification, ser. Studies in Classification,
Data Analysis and Knowledge Organization. Springer Berlin Heidel-
berg, 1993.

[30] T. Ruehl, “Non agglomerative data preparation for a cluster-oriented
visualization with emergent structure maps,” Master’s thesis, Philipps-
Universitaet, Marburg, Germany, 2009.

[31] J. D. Brutlag, “Aberrant behavior detection in time series for network
monitoring,” in Proceedings of the 14th USENIX Conference on System
Administration, ser. LISA ’00. USENIX Association, 2000.

[32] O. Notelli, “Justniffer: Tcp flow sniffer,” Jul. 2016. [Online]. Available:
http://justniffer.sf.net

[33] N. Harbour, “tcpxtract,” Jul. 2016. [Online]. Available: http://tcpxtract.
sf.net

http://tranalyzer.sf.net
https://www.ietf.org/proceedings/78/slides/NMRG-7.pdf
http://www.tcpdump.org
https://www.wireshark.org
https://www.ietf.org/rfc/rfc3954.txt
http://www.ibm.com/software/products/en/qradar-siem
http://nfdump.sf.net
http://nfdump.sf.net
http://www.sflow.org
https://www.bro.org
http://tstat.polito.it
http://oss.oetiker.ch/rrdtool
http://tools.netsa.cert.org/silk
https://snort.org
http://www.ntop.org/products/deep-packet-inspection/ndpi
http://www.ntop.org/products/deep-packet-inspection/ndpi
http://ee.lbl.gov
http://justniffer.sf.net
http://tcpxtract.sf.net
http://tcpxtract.sf.net

